
Evaluating Intelligence in Unmanned Ground Vehicle Teams

Sesh Commuri1, Yushan Li1, Dean Hougen2, Rafael Fierro3

1School of Electrical and Computer Engineering

University of Oklahoma, Norman, OK
2School of Computer Science

University of Oklahoma, Norman, OK
3School of Electrical and Computer Engineering

Oklahoma State University, Stillwater, OK

ABSTRACT
Evaluation of intelligence in Teams of Unmanned Ground
Vehicles (UGVs) requires the development of consistent metrics
and benchmarks. This is a complicated process as the
implementation of the UGVs is problem and domain specific.
Different performance requirements give rise to different set of
metrics making the comparison of performance between two
implementations difficult. In this paper, we focus on three aspects
of intelligence, namely reconfiguration, adaptation and learning,
and communications in UGV teams and investigate the
development of metrics for measuring their performance. We
also investigate the available benchmarks for intelligent systems
and verify their suitability for measuring the performance of
UGV teams. A hierarchical architecture called Adaptation and
Learning at All levels (AL2) for the UGV teams is presented.
This architecture is designed to allow for a modular and
hierarchical approach to implement deliberative and reactive
behaviors in teams of autonomous vehicles. In this
implementation, system intelligence is incorporated at all levels
of the hierarchy. The performance of the proposed architecture is
evaluated using the metrics identified.
Keywords: Performance Metrics, Intelligent Systems, UGVs,
Adaptation and Learning.

1. INTRODUCTION

The high cost associated with the acquisition and
deployment of mobile robots motivates the development of
low cost multi-robot teams that can function cooperatively
to achieve specified goals. As the performance
requirements get more stringent and the application realm
becomes more diverse, embedding intelligence in system
becomes a critical part of the realization of the Unmanned
Ground Vehicles (UGV) Teams.
 The notion of “intelligence” and the requirements for
such intelligent systems has been discussed in detail in [1].
For a control system, at a very minimum level, system
intelligence implies the ability to sense the environment, to
make the control decisions based on the task requirements
and to take the necessary corrective actions. At a higher
level, system intelligence may include the ability to
recognize objects and events, to represent the knowledge
in a world model and to plan for the future. Intelligence at

its highest level provides the ability to perceive and
understand, to predict outcomes based on actions, to
choose wisely between actions, and to maximize the
chances of success under variety of circumstances. In
general, intelligence embodies the ability to learn from
experience and adapt successfully to the environment. For
successful implementation, however, “intelligence” has to
be formalized and the required metrics for its measurement
developed.
 The challenges and issues in defining performance
metrics for intelligent systems are discussed in [2, 3]. The
analysis of the system architecture and configuration is
proposed to develop a measure of “Machine Intelligent
Quotient (MIQ)” in [4]. In [5], requirement specifications
and system verification are used to develop a formal
method to specify the performance metrics. Techniques to
assign metrics to intelligent systems are also explored in [6,
7].
 Designing intelligent systems is a complex task
requiring the integration of a diverse set of hardware and
software components. Intelligence can be formally defined
as “the ability of a system to behave appropriately in an
uncertain environment” where “appropriate behavior
maximizes the likelihood of the system’s success in
achieving its goals [1]”. Such an intelligent system should
be able to respond to sensory feedback at every level such
that goals are achieved despite perturbations and
unexpected feedback. Since intelligence responds to
sensory feedback at all levels, overall effectiveness
requires such ‘system intelligence’ to be distributed in
nature. Therefore, any measure of the “intelligence” must
account for the “intelligence” at each level of the system.
Typical components that are to be looked at are:

a. Sensors and actuators
b. Knowledge representation and world model
c. Planning and control
d. Learning and adaptation

In addition to the above, metrics are required to measure
the level of system autonomy. Some of the measures

proposed in literature measure the sensitivity of the
implementation to environment and the learning
algorithms that are implemented [8]. For a system
comprising a single robot, some possible metrics [9] are (a)
the ability to choose strategies or algorithms; (b) the ability
to generate reactive and deliberative behaviors; (c)
effectiveness in accomplishing goals and objectives; (d)
efficiency of operations.
 While the above metrics are adequate to describe high
level system performance, they do not give insight into the
functioning of UGV teams. In the case of UGV teams the
mission complexity and uncertainty in the environment
impose more stringent requirements on the “system
intelligence”. In this case, the design must address
additional issues such as:

1) Dynamic reconfiguration of the UGV teams to meet
mission requirements. This situation is typically
encountered when a new team has to be formed, or
when a team has to be augmented with additional
resources. Dynamic modification of teams also
occurs during formation control of UGVs.

2) Coordination and Cooperation between team
members, and

3) Distributed real-time communications between team
members and other teams.

 These requirements have strong impact on the
implementation of every level in the hierarchy of the
system. Thus, in addition to the metrics for the overall
system performance, the performance analysis requires the

definition of metrics for each level of the hierarchy in the
implementation.
 In this paper, a hierarchical architecture called
Adaptation and Learning at All Levels (AL2), that allows
system intelligence to be incorporated at all levels of the
hierarchy is proposed. This architecture is modular,
scalable and flexible. Specific requirements on the UGV
teams are listed and their impact on the entities in each
layer is discussed. The development of metrics is then
discussed based on this implementation framework. The
rest of this paper is organized as follows: Section 2
presents the AL2 architecture for teams of UGVs. The
metrics needed to evaluate the performance of the team are
discussed in Section 3. The implementation of the
proposed architecture for the development of intelligent
teams of unmanned ground vehicles is then presented in
Section 4.

2. AL2 ARCHITECTURE

In this section, architecture is proposed that enables the
design of complex hierarchical systems using simple
components whose performance can be rigorously
analyzed. This architecture, called Adaptation and
Learning at all Levels (AL2), allows for intelligence to be
implemented at all levels of the hierarchy and for
adaptation and learning occurring at different granularities
throughout the system.

…

S A C A A A
E A W M P A

R ob ot_A gen t 1

S A C A A A

E A W M P A

R ob ot_A gen t 2

S A C A A A
E A W M P A

R ob ot_A gen t n

W ME A P A

R ob ot G rou p n

…

S A C A A A
E A W M P A

R ob ot_A gen t 1

S A C A A A

E A W M P A

R ob ot_A gen t 2

S A C A A A
E A W M P A

R ob ot_A gen t n

W ME A P A

R ob ot G rou p 2

E A W M P A

…

W ME A P A

R ob ot G rou p 1

L 1

L 2

L 3

L 4

S A C A A A
E A W M P A

D elib e ra tive R ob ot A gen t 1

R eactive R ob ot A gen t 1
S A C A A A

E A W M P A

D elib e ra tive R ob ot A gen t 2

R eactive R ob ot A gen t 2

S A C A A A
E A W M P A

D elib e ra tive R ob ot A gen t n

R eactive R ob ot A gen t n

Fig. 1 Architecture for Adaptation and Learning at All Levels (AL2)

 The proposed architecture (AL2) envisions one or
more robotic agents working as a group. At the lowest
level (L1), each robot agent has a control agent (CA), an
actuator agent (AA), and a sensor agent (SA). The control
agent is responsible for attaining the commanded system
performance at the lowest level. It can command the
sensor agent to override its output values, recalibrate its
signal, as well as perform rudimentary signal processing
like filtering. The AA, CA, and SA have the lowest level
of autonomy. This level (L1) is characterized by stringent
real-time requirements and deterministic behavior. At a
very fundamental level, this design is adequate for a
robotic agent to function and perform repetitive tasks in a
structured environment. Note that, because of our
distributed communication infrastructure, the sensor,
actuator, and control sources (and the corresponding sub-
agents) for a single robot agent need not be present on the
same physical platform. For example, a platform lacking a
camera and image processing capabilities could still
perform leader-following if the leader platform had a rear-
facing or omnidirectional camera (or other sensor) that
could be used to sense the relative position of the follower
platform.
 In order to meet the requirements of fault tolerance,
uncertainty in the system model and the environment, we
propose a distributed architecture wherein the higher layer
(L2) incorporates elements that instill higher-level
intelligence in the robot. In this layer, the sensory signals
from Layer L1 are processed by the Estimator Agent (EA).
The output of the Estimator is then used to modify/update
the local representation of the World Model (WM) and as
input to the Control Agent. The distributed intelligence
paradigm that is proposed means that EA can now include
algorithms for fault detection, dynamic sensor
reconfiguration, and sensor fusion at the level of a
deliberative robot agent. The WM entity in the robot agent
maintains information about the environment that is
necessary for the successful tasking of the robot. Typically,
this would include local map information, friend/foe
classification, targets and obstacles etc. The Planning
Agent (PA) utilizes the information from the local model
of the world (WM) and the high-level task requirements to
generate a plan that is communicated to the control agent
in layer L1. The PA implements algorithms for path
planning, obstacle avoidance, optimization, etc., for an
individual robot. Level L2 is characterized by increased
autonomy and less stringent real-time requirements.
 A team of robots consists of a number of individual
robot agents possibly with differing sensor/actuator suites
and capabilities. The coordination between these agents is
managed by the PA entity at the level of the robot group
(L3). Information sharing between L2 entities is controlled
by the entities in L3. This increases the security of the
implementation because the L2 entities can function
independently of each other, while still functioning in a
coordinated manner. The primary function of the entities

in Layer 3 is to coordinate the working of the robot agents
in the group. L3 handles all reassignments of tasks
between different robot agents in L2. Introduction of new
robot agents or sensor suites, etc., are the exclusive domain
of L3. The outputs of all the EAs in layer L2 provide the
input to the EA module in L3. Team-level sensor fusion
amongst the different robotic agents is accomplished by
the EA at L3. This EA module is used to update the world
model (WM) in Layer 3. This WM also manages the
information sharing among the robot agents in L2. The
planning agent (PA) in this layer does the task
decomposition from the mission requirements and updates
the individual PAs in L2. It is to be noted that the
architecture specified is independent of hardware and
software implementations and individual elements in L2.
 Layer 4 (L4) manages the coordination between
groups of robot agents. The highest level of intelligence
and autonomy and the lowest level of real-time criticality
characterize L4. Dynamic reassignment of the
responsibilities of each group is handled by L4.
 The proposed architecture will enable the
development of groups of unmanned ground vehicles that
can be dynamically configured and retasked. The
architecture is flexible and is not dependent on the type of
controllers or algorithms implemented in any given layer.

3. DEVELOPMENT OF METRICS FOR

SYSTEM INTELLIGENCE

In this section, the metrics required to evaluate the
performance of the UGV teams with respect to
reconfiguration, cooperation and the real-time
communication between team entities are addressed.

3.1 Dynamic Reconfiguration of Hardware and
Software

To meet the operational requirements for different tasks,
the system should have the intelligence to implement
different software and hardware configurations
dynamically at the every level of the hierarchy. Plug-and-
play sensors and actuators require relevant signal
processing elements and software drivers to be loaded and
the data made available seamlessly to the application. Fault
handling on the other hand might necessitate the routing of
signals dynamically through a different part of the system
in order to bypass a faulted element. The capability of the
system to handle these requirements can be evaluated by
the following set of metrics.

a. Is the system reconfigurable?
 The rigidity of the implementation can be assessed by
checking the amount of reconfigurable entities in the
implementation. A typical implementation may consist of
fixed hardware and software components and some

modules whose functionality can be modified at run-time
either by the user or by other processes. The amount of
reconfigurable resources as a ratio of the overall system
resources is a measure of the reconfigurability of the
system.

b. Is the system reconfiguration static or
dynamic?
 Static reconfiguration requires the system to be taken
off line and reconfigured before it is deployed. On the
other hand, dynamic reconfiguration can take place while
the system is under operation. Dynamic reconfiguration is
essential when it is not feasible to take the system off-line
to implement changes.

c. Can the system be fully / partially
reconfigured?
 Full and partial reconfigurations are important aspects
of the design of intelligent systems. Systems typically need
to execute special tests at startup to verify proper system
functioning. Once the startup tests are complete, the
system can transition to the “run-time” mode. While it is
easy to load test software to run system tests at startup, the
tests that can be run are constrained by the hardware. By
incorporating the ability to change the configuration of the
hardware, for example by using FPGA devices, the same
hardware can be used for system tests at startup and then
“fully” reconfigured for run-time operations. The ability to
“fully” reconfigure the hardware is also essential to the
retasking of the individual robot. When the robot is
retasked, sensor and actuator configurations can be
selected that adapt the robot for the specified task. Since
the embedded hardware can be optimized for the specific
task, the overall performance can be improved without an
increase in system cost.
 Often, it is required to re-route the signals to
accommodate for faults or add additional circuitry to
handle signals from new sensors that come on-line. In such
circumstances, unused portions of the FPGA can be
configured to handle this requirement while the rest of the
device is unaffected. Such reconfiguration, called Partial
Reconfiguration, is essential to support retasking of
individual robots, plug-and-play transducers, and for fault
accommodation.

3.2 Coordination and Cooperation Between
Team Members

Traditional control theory enables the design of controllers
in a single mode of operation in which the task and the
controlled plant are fixed. Contrary to this, in the case of

UGV teams, team members usually interact with each
other and with uncertain or unstructured environments.
The team is to reach a goal destination, negotiate around
obstacles and satisfy constraints on the formation. Thus,
any measure of performance of the UGV teams has to
address the ability of the teams to coordinate and cooperate
with another in order to successfully accomplish the
overall mission objective. The effectiveness of the
implementation of UGV teams for coordination and
cooperation among team entities can be measured by the
following set of metrics.

a. Is the UGV team capable of executing simple

formations?
 The ability of the UGV team to execute simple
formations like leader-follower, straight line, and convoy
are a good indication of the coordinated activity among the
members of the UGV team.

b. Is it possible for individual members in the

team to seamlessly share sensory information,
world models, and data?

 The performance of the UGV team can be
significantly improved if the sensors could be calibrated
using reference data gathered by an external entity. The
ability to use sensory information from other team
members also extends the capability of a team in the face
of sensory failures. Successful implementation of
intelligent UGV teams requires the ability for each
member of the team to benefit from the knowledge gained
by other team members. Thus by sharing the world models
and the knowledge, UGVs can demonstrate behaviors that
are not programmed. Similarly, sharing of performance
data between members is critical to the efficient operation
of the UGV team.

c. Can an UGV team be dynamically modified by
the addition or removal of a team member?
 Operational damage to an UGV or changing mission
requirements often requires augmentation of an UGV team
with additional resources. The ability to recognize the
availability of additional resources and retask each of the
UGVs in the team is a measure of the dynamic adaptability
of the UGV team. This characteristic is also important in
cases where an UGV team moving in a formation has to
navigate around a dynamic obstacle. In this case, the team
has to split into two sub-teams, maintain sub-formations
while avoiding the obstacle and then rejoin in the original
formation.

3.3 Distributed Real-Time Communications

Real-time communications are essential to support
other functions within the UGV teams. The
communication scheme has to be flexible and allow
for communication of differing transmission rates,
media, and security. The ability of the system to
dynamically select channels of communication to
improve performance and reduce power consumption
is critical to the performance of the team. The
following characteristics can be used as a measure of
the performance of the communications scheme.

a. Is there a mechanism for the intra-layer
and inter-layer communications?
 Teams of UGVs have to communicate and
coordinate at several levels [11]. Therefore in each
layer, modular implementation of the entities with
appropriate communication interfaces is crucial for
the successful coordination between UGVs. The
communication mechanism will have to provide
visibility into each entity at every level of the
implementation. For example, the ability to share
sensory data, world models, or plans between
different UGVs in a team is essential to the
implementation of intelligent UGVs. Intra-layer and
inter-layer communication is essential for the
intelligence of an UGV while communication
between different UGVs and teams of UGVs is
crucial for the implementation of intelligent teams of
UGVs.

b. Is the communication scheme used flexible?
 The higher layers in the implementation of an
UGV are typically characterized by abstract entities
where intelligent decisions are made. The lower
layers on the other hand, are characterized by real-
time control modules where traditional closed loop
control decisions are taken. The varied nature of
communication at each level in the implementation of
an UGV implies that the communication scheme
employed must be flexible enough to enable the
dissemination of high-level abstract information as
well as the low-level real-time data.

b. What are the communication mechanisms
and the guaranteed performance?
 Successful operation of the UGV teams requires
a number of communication techniques. Commonly
implemented ones are the ability to provide query-
and-response mechanism, broadcast and periodic
transmission of data between different entities in the
implementation. Key properties such as bandwidth,
transmission rates, protocol overhead, transmission
error rates, error correcting methods etc. are to be
analyzed to ensure that the communications do not
become a bottleneck in the performance of the overall
system.

4. CASE STUDY

The proposed framework is tested by implementing
the L1 layer of the proposed architecture on the
Xilinx Virtex-II Pro platform [13]. This platform was
selected based on its capability to implement
reconfigurable architectures, and the excellent
development tools and product support. The Virtex-II
Pro XC2VP4 has a PowerPC core, 6768 logic cells,
504 KBits BRAM, 4 3.125 Gbps RocketIO
transceivers, and 3.01 Mbits configuration space.
 The Xilinx Virtex-II Pro device is a user
programmable gate array with embedded PowerPC
processor and embedded high-speed serial
transceivers. The Xilinx Virtex architecture is coarse
grained and consists of a number of basic cells called
configurable logic blocks (CLBs). These logic blocks
are arranged in rows and columns, with each CLB
consisting of four logic cells arranged in two slices.
Each CLB also contains logic that implements a four-
input look up tables (LUTs). Each slice contains two
function generators, two storage elements, arithmetic
logic gates, large multiplexers, wide function
capability, fast-carry look ahead chains, and
horizontal cascade chains. The function generators
are configurable as four input look up tables (LUTs),
sixteen bit shift registers, or as sixteen bit selective
RAM memory. Each CLB also has fast interconnect
and connects to a generalized routing matrix (GRM)
to access general routing resources. The Virtex-II Pro
has SelectIO-Ultra blocks (IOBs) that provide the
interface between the package pins and the internal
configurable logic. Active Interconnect Technology
connects all these components together. The overall
interconnection is hierarchical and is designed to
support high speed designs.
 The programmable elements in the Virtex-II Pro,
including the routing resources, are controlled by
values stored in the static memory cells. The device is
configured by loading the bitstream into the internal
configuration memory. These values can be reloaded
to change the functions of the programmable
elements. The Xilinx Virtex family of FPGAs
supports both partial as well as dynamic
reconfiguration. Partial reconfiguration can be
achieved in one of the two ways, namely Module-
based partial reconfiguration and difference-based
reconfiguration. In the module-based reconfiguration,
the entire module can be reconfigured. The height of
the reconfigurable module is the height of the device
and the module can cover one or more columns. In
difference-based reconfiguration, the reconfiguration
is done by making a small change in the design, and
then generating a bit-stream based only on the
differences in the two designs. Switching the
configuration from one implementation to another is
easy and very quick.
 The system is designed with PPC405 processor
core, SDRAM controller connected to Processor
Local Bus (PLB) and general purpose Inputs-Output
(GPIO) devices like Leds, Push buttons, UART and
dip switches are connected to its On-chip Peripheral
Bus (OPB). These are the components available on

Fig. 2. Implementation of PWM motor control with dynamic reconfiguration for fault accommodation.

Fig. 3. Neural Network based compensation of actuator nonlinearities.

Fig. 4. Implementation of a one-layer Neural Network in Simulink using Xilinx Toolset.

the board, so the first step is to verify the proper
functionality of all these components. To do this, the
processor boots up with a configuration file to test all the
components. On successful completion of built in self test,
the processor fetches the second configuration file to
configure itself and the board, switching into operational
mode. If subsequent reconfiguration of the system requires
additional components, then the configuration files can be
loaded dynamically into the FPGA. For example, if serial
communication capability is required, then a preconfigured
UART module can be loaded into the FPGA and the
relevant software drivers activated. This can be achieved
during the operation of the system with configuration
times of the order of micro-seconds.
 In the second design example, a PWM generator is
implemented in the hardware to control the drive motors of
the robot (Fig. 2). Timer 1 (pwmTimer) is configured to
generate the PWM signal while Timer 2 (opbTimer) is
configured to sense the feedback signal. If a fault is
detected in the “sense” circuit during operation, then a
different sensing circuit is dynamically created and the
signals routed through it. The control cycle in this example
was executed in real time with a sampling rate of 20 milli-
secs. The time for reconfiguration was of the order of a
few micro-seconds showing that dynamic fault
accommodation was achieved in real time.
 In the third design example, a Neural Network (NN) is
implemented in the FPGA to compensate for actuator
deadband (Fig.3). The controller continuously monitors the
output and dynamically instantiates the neural network in
the FPGA when the performance degrades significantly
due to load dependent deadband in the actuator dynamics.
The Neural Network is modeled and designed in Simulink
using the Xilinx toolset provided by Mathworks Inc. (Fig.
4). Once the design has been successfully validated, a
configuration bit stream can be generated that allows for
dynamic creation of the NN module in the hardware.

 5. CONCLUSIONS

 In this paper, architecture was presented that
facilitates the implementation of teams of intelligent UGVs.
Three aspects of intelligence, namely reconfiguration,
adaptation and learning, and communications in UGV
teams were investigated and metrics for measuring their
performance were proposed. The performance of the
proposed architecture was evaluated using the metrics
identified.

REFERENCES

[1]. J. S. Albus. Outline for Theory of Intelligence. IEEE
Trans. System, man and Cybernetics, Vol. 21, No.3,
pp473-509, 1991.

 [2] J.M. Evans, E.R. Messina, Performance Metrics for
Intelligent Systems. . Proc. of Performance Metrics for
Intelligent Systems Workshop. 2000 PerMIS Workshop,
2000.
 [3] L.A. Zadeh. The Search for Metrics of Intelligence- A
Critical View. Proc. of Performance Metrics for Intelligent
Systems Workshop. 2000 PerMIS Workshop, 2000.
[4] E.C. Chalfant, S. Lee. Measuring the Intelligence of
Robotic Systems: An Engineering Perspective.
Proceedings of International Symposium on Intelligent
Systems. Gaithersburg, MD. October, 1999.
[5]. Y.Zhang, A.K. Mackworth. Formal Speification of
Performance Metrics for Intelligent Systems. Proc. of
Performance Metrics for Intelligent Systems Workshop.
2000 PerMIS Workshop, 2000
[6]. C. Schlenoff, L. Welsch, R. Madhavan, N.
Zimmerman, Towards Measuring the Performance of
Architectural Components of Autonomous Vehicular
Systems. 2002 PerMIS Workshop August 13-15, 2002.
[7]. J. S. Albus. Features of Intelligence Required by
Unmanned Ground Vehicles. Proc. of Performance
Metrics for Intelligent Systems Workshop. 2000 PerMIS
Workshop, 2000.
[8] A.Yavnai. Metrics for System Autonomy, Part I:
Metrics Definition. Proc. of Performance Metrics for
Intelligent Systems Workshop. 2000 PerMIS Workshop,
2000
[9] R. Finkelstein. A Method for Evaluating the ‘IQ’ of
Intelligent Systems. Proc. of Performance Metrics for
Intelligent Systems Workshop. 2000 PerMIS Workshop,
2000.
[10] Sesh Commuri, Yushan Li, Dean Hougen, Rafael
Fierro. Designing for System Intelligence. Proceedings of
the 5th IFAC Symposium on the Intelligent Autonomous
Vehicles, Lisbon, Portugal, July, 2004.
[11] R.Muthuraman, A. Fajebe, S.Commuri. Intelligence
in Embedded Controls-A Case Study. Proceedings of the
IEEE Region 5 Technical Conference, April 2004.
[12] S. Donti, and R. L. Haggard, “A survey of
dynamically reconfigurable FPGA devices, “ Proc. IEEE.,
vol. 8, pp. 422-426, 2003.
[13] Xilinx, Inc., Virtex-II Pro: Platform FPGA Handbook,
UG012, v 2.0., 2002.

